Temporal Cognitive Tree: A Hierarchical Modeling Approach for Event Temporal Relation Extraction

ACL ARR 2024 June Submission2850 Authors

15 Jun 2024 (modified: 02 Aug 2024)ACL ARR 2024 June SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Understanding and analyzing event temporal relations is a crucial task in Natural Language Processing (NLP). This task, known as Event Temporal Relation Extraction (ETRE), aims to identify and extract temporal connections between events in text. Recent studies focus on locating the relative position of event pairs on the timeline by designing logical expressions or auxiliary tasks to predict their temporal occurrence. Despite these advances, this modeling approach neglects the multidimensional information in temporal relation and the hierarchical process of reasoning. In this study, we propose a novel hierarchical modeling approach for this task by introducing a Temporal Cognitive Tree (TCT) that mimics human logical reasoning. Additionally, we also design a integrated model incorporating prompt optimization and deductive reasoning to exploit multidimensional supervised information. Extensive experiments on TB-Dense and MATRES datasets demonstrate that our approach outperforms existing methods.
Paper Type: Long
Research Area: Information Extraction
Research Area Keywords: relation extraction
Contribution Types: NLP engineering experiment
Languages Studied: English
Submission Number: 2850
Loading