Keywords: Knowledge Editing, In-Context Learning, Language Models
TL;DR: We propose Consistent In-Context Editing, an approach for tuning language models through contextual distributions, overcoming the limitations of traditional fine-tuning methods that learn towards one-hot targets.
Abstract: In scenarios where language models must incorporate new information efficiently without extensive retraining, traditional fine-tuning methods are prone to overfitting, degraded generalization, and unnatural language generation. To address these limitations, we introduce Consistent In-Context Editing (ICE), a novel approach leveraging the model's in-context learning capability to optimize towards a contextual distribution rather than a one-hot target. ICE introduces a simple yet effective optimization framework for the model to internalize new knowledge by aligning its output distributions with and without additional context. This method enhances the robustness and effectiveness of gradient-based tuning methods, preventing overfitting and preserving the model's integrity. We analyze ICE across four critical aspects of knowledge editing: accuracy, locality, generalization, and linguistic quality, demonstrating its advantages. Experimental results confirm the effectiveness of ICE and demonstrate its potential for continual editing, ensuring that the integrity of the model is preserved while updating information.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 896
Loading