Connections between Schedule-Free Optimizers, AdEMAMix, and Accelerated SGD Variants

ICLR 2026 Conference Submission22289 Authors

20 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: AdEMAMix, Schedule Free, Accelerated SGD
Abstract: Recent advancements in deep learning optimization have introduced new algorithms, such as Schedule-Free optimizers, AdEMAMix, MARS and Lion which modify traditional momentum mechanisms. In a separate line of work, theoretical acceleration of stochastic gradient descent (SGD) in noise-dominated regime has been achieved by decoupling the momentum coefficient from the current gradient's weight. In this paper, we establish explicit connections between these two lines of work. We substantiate our theoretical findings with experiments on 300m and 150m scale language modeling task. We find that AdEMAMix, which most closely resembles accelerated versions of stochastic gradient descent, exhibits superior performance. Building on these insights, we introduce a modification to AdEMAMix, termed Simplified-AdEMAMix, which maintains the same performance as AdEMAMix across both large and small batch-size settings while eliminating the need for two different momentum terms.
Primary Area: optimization
Submission Number: 22289
Loading