Posterior Label Smoothing for Node Classification

ICLR 2025 Conference Submission746 Authors

14 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: node classification, label smoothing
Abstract: Soft labels can improve the generalization of a neural network classifier in many domains, such as image classification. Despite its success, the current literature has overlooked the efficiency of label smoothing in node classification with graph-structured data. In this work, we propose a simple yet effective label smoothing for the transductive node classification task. We design the soft label to encapsulate the local context of the target node through the neighborhood label distribution. We apply the smoothing method for seven baseline models to show its effectiveness. The label smoothing methods improve the classification accuracy in 10 node classification datasets in most cases. In the following analysis, we find that incorporating global label statistics in posterior computation is the key to the success of label smoothing. Further investigation reveals that the soft labels mitigate overfitting during training, leading to better generalization performance. Our code is available at https://anonymous.4open.science/r/PosteL.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 746
Loading