Keywords: Diffusion models;RL
Abstract: Aligning diffusion models with human preferences remains challenging, particularly when reward models are unavailable or impractical to obtain, and collecting large-scale preference datasets is prohibitively expensive. This raises a fundamental question: can we achieve effective alignment using only minimal human feedback, without auxiliary reward models, by unlocking the latent capabilities within diffusion models themselves? In this paper, we propose SAIL (Self-Amplified Iterative Learning), a novel framework that enables diffusion models to act as their own teachers through iterative self-improvement. Starting from a minimal seed set of human-annotated preference pairs, SAIL operates in a closed-loop manner where the model progressively generates diverse samples, self-annotates preferences based on its evolving understanding, and refines itself using this self-augmented dataset. To ensure robust learning and prevent catastrophic forgetting, we introduce a ranked preference mixup strategy that carefully balances exploration with adherence to initial human priors. Extensive experiments demonstrate that SAIL consistently outperforms state-of-the-art methods across multiple benchmarks while using merely 6\% of the preference data required by existing approaches, revealing that diffusion models possess remarkable self-improvement capabilities that, when properly harnessed, can effectively replace both large-scale human annotation and external reward models.
Primary Area: generative models
Submission Number: 224
Loading