Meta-Learning for Recalibration of EMG-Based Upper Limb ProsthesesDownload PDF

12 Jun 2020 (modified: 13 Jul 2020)ICML 2020 Workshop LifelongML Blind SubmissionReaders: Everyone
  • Student First Author: Yes
  • Keywords: meta-learning, emg
  • Abstract: An EMG-based upper limb prosthesis relies on a statistical pattern recognition system to map the EMG signal of residual forearm muscles into the appropriate hand movements. As the EMG signal changes each time the user puts the prosthesis on, an efficient method for prosthesis recalibration is needed. Here we show that meta-learning is a promising approach for achieving this aim. Furthermore, we show that meta-leaning can be used to recalibrate the prosthesis even when the examples of some movement types are missing in the target session.
  • TL;DR: We show that meta-leaning is a promising approach for recalibrating EMG-based upper limb prostheses.
0 Replies

Loading