Transfer Learning Under High-Dimensional Graph Convolutional Regression Model for Node Classification
Keywords: Transfer learning, Node Classification, Graph Convolution, High-Dimensional
Abstract: Node classification is a fundamental task, but obtaining node classification labels can be challenging and expensive in many real-world scenarios. Transfer learning has emerged as a promising solution to address this challenge by leveraging knowledge from source domains to enhance learning in a target domain. Existing transfer learning methods for node classification primarily focus on integrating Graph Convolutional Networks (GCNs) with various transfer learning techniques. While these approaches have shown promising results, they often suffer from a lack of theoretical guarantees, restrictive conditions, and high sensitivity to hyperparameter choices. To overcome these limitations, we employ a Graph Convolutional Multinomial Logistic Lasso Regression (GCR) model which simplifies GCN, and develop a transfer learning method called Trans-GCR based on the GCR model. We provide theoretical guarantees of the estimate obtained under the GCR model in high-dimensional settings. Moreover, Trans-GCR demonstrates superior empirical performance, has a low computational cost, and requires fewer hyperparameters than existing methods.
Supplementary Material: zip
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7808
Loading