On Calibration of LLM-based Guard Models for Reliable Content Moderation

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Content Moderation, LLM-based Guard Models, Calibration, Safety
Abstract: Large language models (LLMs) pose significant risks due to the potential for generating harmful content or users attempting to evade guardrails. Existing studies have developed LLM-based guard models designed to moderate the input and output of threat LLMs, ensuring adherence to safety policies by blocking content that violates these protocols upon deployment. However, limited attention has been given to the reliability and calibration of such guard models. In this work, we empirically conduct comprehensive investigations of confidence calibration for 9 existing LLM-based guard models on 12 benchmarks in both user input and model output classification. Our findings reveal that current LLM-based guard models tend to 1) produce overconfident predictions, 2) exhibit significant miscalibration when subjected to jailbreak attacks, and 3) demonstrate limited robustness to the outputs generated by different types of response models. Additionally, we assess the effectiveness of post-hoc calibration methods to mitigate miscalibration. We demonstrate the efficacy of temperature scaling and, for the first time, highlight the benefits of contextual calibration for confidence calibration of guard models, particularly in the absence of validation sets. Our analysis and experiments underscore the limitations of current LLM-based guard models and provide valuable insights for the future development of well-calibrated guard models toward more reliable content moderation. We also advocate for incorporating reliability evaluation of confidence calibration when releasing future LLM-based guard models.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13206
Loading