Keywords: temporal memory, successor features, online learning, Hebbian learning
TL;DR: We present a new temporal memory algorithm with online learning for decision-making in changing, partially observable environments.
Abstract: This paper presents a novel approach to address the challenge of online sequence learning for decision making under uncertainty in non-stationary, partially observable environments. The proposed algorithm, Distributed Hebbian Temporal Memory (DHTM), is based on the factor graph formalism and a multi-component neuron model. DHTM aims to capture sequential data relationships and make cumulative predictions about future observations, forming Successor Features (SFs). Inspired by neurophysiological models of the neocortex, the algorithm uses distributed representations, sparse transition matrices, and local Hebbian-like learning rules to overcome the instability and slow learning of traditional temporal memory algorithms such as RNN and HMM. Experimental results show that DHTM outperforms LSTM, RWKV and a biologically inspired HMM-like algorithm, CSCG, on non-stationary data sets. Our results suggest that DHTM is a promising approach to address the challenges of online sequence learning and planning in dynamic environments.
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6970
Loading