WASUP: Interpretable Classification with Weight-Input Alignment and Class-Discriminative SUPports Vectors

23 Sept 2024 (modified: 19 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: explainability, interpretability, case-based reasoning
Abstract: The deployment of deep learning models in critical domains necessitates a balance between high accuracy and interpretability. We introduce WASUP, an inherently interpretable neural network that provides local and global explanations of its decision-making process. We prove that these explanations are faithful by fulfilling established axioms for explanations. Leveraging the concept of case-based reasoning, WASUP extracts class-representative support vectors from training images, ensuring they capture relevant features while suppressing irrelevant ones. Classification decisions are made by calculating and aggregating similarity scores between these support vectors and the input's latent feature vector. We employ B-Cos transformations, which align model weights with inputs to enable faithful mappings of latent features back to the input space, facilitating local explanations in addition to global explanations of case-based reasoning. We evaluate WASUP on three tasks: fine-grained classification on Stanford Dogs, multi-label classification on Pascal VOC, and pathology detection on the RSNA dataset. Results indicate that WASUP not only achieves competitive accuracy compared to state-of-the-art black-box models but also offers insightful explanations verified through theoretical analysis. Our findings underscore WASUPs potential for applications where understanding model decisions is as critical as the decisions themselves.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3115
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview