Keywords: coreset, Continuous-and-Bounded learning, outliers, dynamic setting
TL;DR: We provide a robust coreset construction method for continuous-and-bounded optimization problems
Abstract: In many machine learning tasks, a common approach for dealing with large-scale data is to build a small summary, {\em e.g.,} coreset, that can efficiently represent the original input. However, real-world datasets usually contain outliers and most existing coreset construction methods are not resilient against outliers (in particular, an outlier can be located arbitrarily in the space by an adversarial attacker). In this paper, we propose a novel robust coreset method for the {\em continuous-and-bounded learning} problems (with outliers) which includes a broad range of popular optimization objectives in machine learning, {\em e.g.,} logistic regression and $ k $-means clustering. Moreover, our robust coreset can be efficiently maintained in fully-dynamic environment. To the best of our knowledge, this is the first robust and fully-dynamic coreset construction method for these optimization problems. Another highlight is that our coreset size can depend on the doubling dimension of the parameter space, rather than the VC dimension of the objective function which could be very large or even challenging to compute. Finally, we conduct the experiments on real-world datasets to evaluate the effectiveness of our proposed robust coreset method.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
18 Replies
Loading