Chronicling Germany: An Annotated Historical Newspaper Dataset

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: historic newspaper processing, digital history, computer vision
Abstract: The correct detection of dense article layout and the recognition of characters in historical newspaper pages remains a challenging requirement for Natural Language Processing (NLP) and machine learning applications on historical newspapers in the field of digital history. Digital newspaper portals for historic Germany typically provide Optical Character Recognition (OCR) text, albeit of varying quality. Unfortunately, layout information is often missing, limiting this rich source’s scope. Our dataset is designed to enable the training of layout and OCR modells for historic German-language newspapers. The Chronicling Germany dataset contains 693 annotated historical newspaper pages from the time period between 1852 and 1924. The paper presents a processing pipeline and establishes baseline results on in- and out-of-domain test data using this pipeline. Both our dataset and the corresponding baseline code are freely available online. This work creates a starting point for future research in the field of digital history and historic German language newspaper processing. Furthermore, it provides the opportunity to study a low-resource task in computer vision.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6799
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview