Keywords: LLM-generated text detection, AIGC detection
Abstract: Large language models (LLMs) present significant risks when used to generate non-factual content and spread disinformation at scale. Detecting such LLM-generated content is crucial, yet current detectors often struggle to generalize in open-world contexts. We introduce **Learning2Rewrite**, a novel framework for detecting AI-generated text with exceptional generalization to unseen domains. Our method leverages the insight that LLMs inherently modify AI-generated content less than human-written text when tasked with rewriting. By training LLMs to minimize alterations on AI-generated inputs, we amplify this disparity, yielding a more distinguishable and generalizable edit distance across diverse text distributions. Extensive experiments on data from 21 independent domains and four major LLMs (GPT-3.5, GPT-4, Gemini, and Llama-3) demonstrate that our detector outperforms state-of-the-art detection methods by up to 23.04% in AUROC for in-distribution tests, 37.26% for out-of-distribution tests, and 48.66% under adversarial attacks. Our unique training objective ensures better generalizability compared to directly training for classification, when leveraging the same amount of learned parameters. Our findings suggest that reinforcing LLMs’ inherent rewriting tendencies offers a robust and scalable solution for detecting AI-generated text.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8581
Loading