Keywords: Graph machine learning, Large scale GNNs, Staleness awareness
Abstract: Graph Neural Networks (GNNs) have shown exceptional success in graph representation learning and a wide range of real-world applications. However, scaling deeper GNNs poses challenges due to the neighbor explosion problem when training on large-scale graphs. To mitigate this, a promising class of GNN training algorithms utilizes historical embeddings to reduce computation and memory costs while preserving the expressiveness of the model. These methods leverage historical embeddings for out-of-batch nodes, effectively approximating full-batch training without losing any neighbor information—a limitation found in traditional sampling methods. However, the staleness of these historical embeddings often introduces significant bias, acting as a bottleneck that can adversely affect model performance. In this paper, we propose a novel VersatIle Staleness-Aware GNN, named VISAGNN, which dynamically and adaptively incorporates staleness criteria into the large-scale GNN training process. By embedding staleness into the message-passing mechanism, loss function, and historical embeddings during training, our approach enables the model to adaptively mitigate the negative effects of stale embeddings, thereby reducing estimation errors and enhancing downstream accuracy. Comprehensive experiments demonstrate the effectiveness of our method in overcoming the limitations of existing historical embedding techniques, highlighting its superior performance and efficiency on large-scale benchmarks, as well as significantly accelerated convergence. We will make the code publicly available upon acceptance of the work.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11422
Loading