Keywords: Large Language Models, Software Engineering Agents, Process Reward Models, Efficiency
Abstract: Large Language Model (LLM) agents are increasingly deployed for complex, multi-step software engineering (SWE) tasks. However, their trajectories often contain costly inefficiencies, such as redundant exploration, looping, and failure to terminate once a solution is reached. Prior work has largely treated these errors in a post-hoc manner, diagnosing failures only after execution. In this paper, we introduce SWE-PRM, an inference-time Process Reward Model (PRM) that intervenes during execution to detect and course-correct trajectory-level errors. Our PRM design leverages a taxonomy of common inefficiencies and delivers lightweight, interpretable feedback without modifying the underlying policy. On SWE-bench Verified, closed-source PRMs improve resolution from 40.0\% to 50.6\% (+10.6 p.p.), with the largest gains on medium and hard tasks. Among feedback strategies, taxonomy-guided PRMs outperform unguided or explicit action-prescriptive variants, increasing success rate while reducing trajectory length. These benefits come at an acceptable added inference cost of as low as \$0.2, making PRMs a practical and scalable mechanism for improving SWE agents' reliability and efficiency.
Archival Option: The authors of this submission do *not* want it to appear in the archival proceedings.
Submission Number: 114
Loading