Abstract: Retrieval-augmented generation improves the factual accuracy of Large Language Models (LLMs) by incorporating external context, but often suffers from irrelevant retrieved content that hinders effectiveness. Context compression addresses this issue by filtering out irrelevant information from context before LLM generation. However, existing methods struggle to adaptively adjust compression rates for different context, maintain low latency and integrate information across multiple documents. To overcome these limitations, We introduce AttnComp, an adaptive, efficient and context-aware compression framework. By leveraging the attention mechanism of LLMs to identify relevant information, AttnComp employs a Top-P compression algorithm to retain the minimal set of documents whose cumulative attention weights exceeds a predefined threshold. In addition to compression, AttnComp estimates response confidence by assessing the overall relevance of the retrieved content, enabling users to gauge response reliability. Experiments demonstrate that AttnComp outperforms existing compression methods and uncompressed baselines, achieving higher accuracy with substantial compression rates and lower latency.
Paper Type: Long
Research Area: Question Answering
Research Area Keywords: multihop QA, open-domain QA
Contribution Types: Model analysis & interpretability, Approaches low compute settings-efficiency
Languages Studied: English
Submission Number: 5810
Loading