Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Zero-sum games, reinforcement learning theory, variance reduction
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: This work proposes a novel model-free algorithm for zero-sum Markov games with a provably improved sample complexity.
Abstract: The problem of two-player zero-sum Markov games has recently attracted increasing interests in theoretical studies of multi-agent reinforcement learning (RL). In particular, for finite-horizon episodic Markov decision processes (MDPs), it has been shown that model-based algorithms can find an $\epsilon$-optimal Nash Equilibrium (NE) with the sample complexity of $O(H^3SAB/\epsilon^2)$, which is optimal in the dependence of the horizon $H$ and the number of states $S$ (where $A$ and $B$ denote the number of actions of the two players, respectively). However, none of the existing model-free algorithms can achieve such an optimality. In this work, we propose a model-free stage-based Q-learning algorithm and show that it achieves the same sample complexity as the best model-based algorithm, and hence for the first time demonstrate that model-free algorithms can enjoy the same optimality in the $H$ dependence as model-based algorithms. The main improvement of the dependency on $H$ arises by leveraging the popular variance reduction technique based on the reference-advantage decomposition previously used only for single-agent RL. However, such a technique relies on a critical monotonicity property of the value function, which does not hold in Markov games due to the update of the policy via the coarse correlated equilibrium (CCE) oracle. Thus, to extend such a technique to Markov games, our algorithm features a key novel design of updating the reference value functions as the pair of optimistic and pessimistic value functions whose value difference is the smallest in history in order to achieve the desired improvement in the sample efficiency.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5671
Loading