Improving Resistance to Noisy Label Fitting by Reweighting Gradient in SAM

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: label noise, sharpness-aware minimization, optimization
Abstract: Noisy labels pose a substantial challenge in machine learning, often resulting in overfitting and poor generalization. Sharpness-Aware Minimization (SAM), as demonstrated in Foret et al. (2021), improves generalization over traditional Stochastic Gradient Descent (SGD) in classification tasks with noisy labels by implicitly slowing noisy learning. While SAM’s ability to generalize in noisy environments has been studied in several simplified settings, its full potential in more realistic training settings remains underexplored. In this work, we analyze SAM’s behavior at each iteration, identifying specific components of the gradient vector that contribute significantly to its robustness against noisy labels. Based on these insights, we propose SANER (Sharpness-Aware Noise-Explicit Reweighting), an effective variant that enhances SAM’s ability to manage noisy fitting rate. Our experiments on CIFAR-10, CIFAR-100, and Mini-WebVision demonstrate that SANER consistently outperforms SAM, achieving up to an 8% increase on CIFAR-100 with 50% label noise.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6068
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview