IW-GAE: Importance weighted group accuracy estimation for improved calibration and model selection in unsupervised domain adaptation

15 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Domain adaptation, model selection, uncertainty representation, unsupervised domain adaptation, importance weight
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Reasoning about a model's accuracy on a test sample from its confidence is a central problem in machine learning, being connected to important applications such as uncertainty representation, model selection, and exploration. While these connections have been well-studied in the i.i.d. settings, distribution shifts pose significant challenges to the traditional methods. Therefore, model calibration and model selection remain challenging in the unsupervised domain adaptation problem--a scenario where the goal is to perform well in a distribution shifted domain without labels. In this work, we tackle difficulties coming from distribution shifts by developing a novel importance weighted group accuracy estimator. Specifically, we formulate an optimization problem for finding importance weight that leads to an accurate group accuracy estimation in the distribution shifted domain with theoretical analysis. Extensive experiments show the effectiveness of group accuracy estimation on model calibration and model selection. Our results emphasize the significance of group accuracy estimation for addressing challenges in unsupervised domain adaptation, as an orthogonal improvement direction with improving transferability of accuracy.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 238
Loading