TWO STAGES DOMAIN INVARIANT REPRESENTATION LEARNERS SOLVE THE LARGE CO-VARIATE SHIFT IN UNSUPERVISED DOMAIN ADAPTATION WITH TWO DIMENSIONAL DATA DOMAINS

24 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: domain invariant representation learning, unsupervised domain adaptation, image recognition, signal processing, classification
TL;DR: Novel method of domain invariant representation learning for large co-variate shift in unsupervised domain adaptation problem
Abstract: Recent developments in the unsupervised domain adaptation (UDA) enable the unsupervised machine learning (ML) prediction for target data, thus this will accelerate real world applications with ML models such as image recognition tasks in self-driving. Researchers have reported the UDA techniques are not working well under large co-variate shift problems where e.g. supervised source data consists of handwritten digits data in monotone color and unsupervised target data colored digits data from the street view. Thus there is a need for a method to resolve co-variate shift and transfer source labelling rules under this dynamics. We perform two stages domain invariant representation learning to bridge the gap between source and target with semantic intermediate data (unsupervised). The proposed method can learn domain invariant features simultaneously between source and intermediate also intermediate and target. Finally this achieves good domain invariant representation between source and target plus task discriminability owing to source labels. This induction for the gradient descent search greatly eases learning convergence in terms of classification performance for target data even when large co-variate shift. We also derive a theorem for measuring the gap between trained models and unsupervised target labelling rules, which is necessary for the free parameters optimization. Finally we demonstrate that proposing method is superiority to previous UDA methods using 4 representative ML classification datasets including 38 UDA tasks. Our experiment will be a basis for challenging UDA problems with large co-variate shift.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3308
Loading