Abstract: The paper presents a learning-based method for computing a discriminative 3D point cloud descriptor for place recognition purposes. Existing methods, such as Point-NetVLAD, are based on unordered point cloud representation. They use PointNet as the first processing step to extract local features, which are later aggregated into a global descriptor. The PointNet architecture is not well suited to capture local geometric structures. Thus, state-of-the-art methods enhance vanilla PointNet architecture by adding different mechanism to capture local contextual information, such as graph convolutional networks or using hand-crafted features. We present an alternative approach, dubbed Min-kLoc3D, to compute a discriminative 3D point cloud descriptor, based on a sparse voxelized point cloud representation and sparse 3D convolutions. The proposed method has a simple and efficient architecture. Evaluation on standard benchmarks proves that MinkLoc3D outperforms current state-of-the-art. Our code is publicly available on the project website. 1
Loading