Rotating Your Face Using Multi-task Deep Neural NetworkDownload PDF

31 Jan 2020OpenReview Archive Direct UploadReaders: Everyone
Abstract: Face recognition under viewpoint and illumination changes is a difficult problem, so many researchers have tried to solve this problem by producing the pose- and illumination- invariant feature. Zhu et al. changed all arbitrary pose and illumination images to the frontal view image to use for the invariant feature. In this scheme, preserving identity while rotating pose image is a crucial issue. This paper proposes a new deep architecture based on a novel type of multitask learning, which can achieve superior performance in rotating to a target-pose face image from an arbitrary pose and illumination image while preserving identity. The target pose can be controlled by the user’s intention. This novel type of multi-task model significantly improves identity preservation over the single-task model. By using all the synthesized controlled pose images, called Controlled Pose Image (CPI), for the pose- illumination- invariant feature and voting among the multiple face recognition results, we clearly outperform the state-of-the-art algorithms by more than 4~6% on the MultiPIE dataset.
0 Replies

Loading