Abstract: Evaluating models on large benchmarks can be very resource-intensive, especially during a period of rapid model evolution. Existing efficient evaluation methods estimate the performance of target models by testing them on a small, static coreset derived from the publicly available evaluation results of source models, which are separate from the target models. However, these approaches rely on the assumption that target models have high prediction consistency with source models, which doesn’t generalize well in practice. To fill this gap, we propose TailoredBench, a method that conducts customized evaluation tailored to each target model. Specifically, a Global-coreset is first constructed as a probe to identify the most consistent source models for each target model with an adaptive source model selection strategy. Afterwards, a scalable K-Medoids clustering algorithm is proposed to extend the Global-coreset to a tailored Native-coreset for each target model. According to the predictions on respective Native-coreset, we estimate the overall performance of target models with a calibrated estimation strategy. Comprehensive experiments on five benchmarks across over 300 models demonstrate that compared to best performing baselines, TailoredBench achieves an average reduction of 31.4% in MAE of accuracy estimates under the same inference budgets, showcasing strong effectiveness and generalizability.
Paper Type: Long
Research Area: Resources and Evaluation
Research Area Keywords: evaluation methodologies, evaluation, metrics
Contribution Types: NLP engineering experiment, Approaches to low-resource settings
Languages Studied: English
Submission Number: 2094
Loading