Keywords: MLLM, Self-Reflection, LoRA Combination
Abstract: Low-Rank Adaptation (LoRA) is extensively used in generative models to enable concept-driven personalization, such as rendering specific characters or adopting unique styles. Although recent approaches have explored LoRA combination to integrate diverse concepts, they often require further fine-tuning or modifications to the generative model's original architecture. To address these limitations, we introduce GPT4LoRA, a novel method for LoRA combination that adjusts combination coefficients by leveraging the self-reflection capabilities of multimodal large language models (MLLMs). GPT4LoRA operates through a three-step process—Generate, Feedback, and Refine—without the need for additional training, relying solely on tailored prompts and iterative refinement to enhance performance. This iterative approach ensures more constructive feedback and optimizes the model responses. Experiments on various LoRA model combinations, including both realistic and anime styles, demonstrate that GPT4LoRA achieves superior results compared to existing methods. Additionally, an evaluation framework based on GPT-4o further highlights the clear performance gains offered by GPT4LoRA over standard baselines, showcasing its potential for advancing the field.
Supplementary Material: pdf
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6215
Loading