Continuously Improving Mobile Manipulation with Autonomous Real-World RL

Published: 31 Oct 2024, Last Modified: 08 Nov 2024CoRL 2024 Workshop WCBMEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement Learning, Mobile Manipulation, Autonomous Learning
Abstract: We present a fully autonomous real-world RL framework for mobile manipulation that can learn policies without extensive instrumentation or human supervision. This is enabled by 1) task-relevant autonomy, which guides exploration towards object interactions and prevents stagnation near goal states, 2) efficient policy learning by leveraging basic task knowledge in behavior priors, and 3) formulating generic rewards that combine human-interpretable semantic information with low-level, fine-grained observations. We demonstrate that our approach allows Spot robots to continually improve their performance on a set of four challenging mobile manipulation tasks, obtaining an average success rate of 80% across tasks, a 3-4 times improvement over existing approaches.
Submission Number: 13
Loading