HyperAdaLoRA: Accelerating LoRA Rank Allocation with Hypernetwork in Training

ACL ARR 2025 May Submission2437 Authors

19 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Parameter-Efficient Fine-Tuning (PEFT), especially Low-Rank Adaptation (LoRA), has emerged as a promising approach to fine-tuning large language models(LLMs) while reducing computational and memory overhead. However, LoRA assumes a uniform rank \textit{r} for each incremental matrix, not accounting for the varying significance of weight matrices across different modules and layers. AdaLoRA leverages Singular Value Decomposition (SVD) to parameterize updates and employs pruning of singular values to introduce dynamic rank allocation, thereby enhancing adaptability. However, during the training process, it often encounters issues of slow convergence speed and high computational overhead. To address this issue, we propose HyperAdaLoRA, a novel framework that accelerates the convergence of AdaLoRA by leveraging a hypernetwork. Instead of directly optimizing the components of Singular Value Decomposition $(P, \Lambda, Q)$, HyperAdaLoRA employs a hypernetwork based on attention mechanisms to dynamically generate these parameters. By pruning the outputs of the hypernetwork that generates the singular values, dynamic rank allocation is achieved. Comprehensive experiments on various datasets and models demonstrate that our method achieves faster convergence while maintaining accuracy.
Paper Type: Long
Research Area: Efficient/Low-Resource Methods for NLP
Research Area Keywords: parameter-efficient-training
Contribution Types: Approaches to low-resource settings
Languages Studied: English
Keywords: parameter-efficient-training
Submission Number: 2437
Loading