Privacy Amplification for Matrix Mechanisms

Published: 16 Jan 2024, Last Modified: 13 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: differential privacy, privacy amplification, matrix mechanism
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose an algorithm for computing privacy guarantees of the matrix mechanism with privacy amplification.
Abstract: Privacy amplification exploits randomness in data selection to provide tighter differential privacy (DP) guarantees. This analysis is key to DP-SGD's success in machine learning (ML), but, is not readily applicable to the newer state-of-the-art (SOTA) algorithms. This is because these algorithms, known as DP-FTRL, use the matrix mechanism to add correlated noise instead of independent noise as in DP-SGD. In this paper, we propose "MMCC'' (matrix mechanism conditional composition), the first algorithm to analyze privacy amplification via sampling for any generic matrix mechanism. MMCC is nearly tight in that it approaches a lower bound as $\epsilon\to0$. To analyze correlated outputs in MMCC, we prove that they can be analyzed as if they were independent, by conditioning them on prior outputs. Our "conditional composition theorem'' has broad utility: we use it to show that the noise added to binary-tree-DP-FTRL can asymptotically match the noise added to DP-SGD with amplification. Our algorithm also has practical empirical utility. We show that amplification leads to significant improvement in the privacy/utility trade-offs for DP-FTRL style algorithms for standard benchmark tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: societal considerations including fairness, safety, privacy
Submission Number: 6261
Loading