Feature-Based Online Bilateral Trade

Published: 22 Jan 2025, Last Modified: 09 Apr 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: bilateral trade, online learning, contextual bandits
Abstract: Bilateral trade models the problem of facilitating trades between a seller and a buyer having private valuations for the item being sold. In the online version of the problem, the learner faces a new seller and buyer at each time step, and has to post a price for each of the two parties without any knowledge of their valuations. We consider a scenario where, at each time step, before posting prices the learner observes a context vector containing information about the features of the item for sale. The valuations of both the seller and the buyer follow an unknown linear function of the context. In this setting, the learner could leverage previous transactions in an attempt to estimate private valuations. We characterize the regret regimes of different settings, taking as a baseline the best context-dependent prices in hindsight. First, in the setting in which the learner has two-bit feedback and strong budget balance constraints, we propose an algorithm with $O(\log T)$ regret. Then, we study the same set-up with noisy valuations, providing a tight $\widetilde O(T^{2/3})$ regret upper bound. Finally, we show that loosening budget balance constraints allows the learner to operate under more restrictive feedback. Specifically, we show how to address the one-bit, global budget balance setting through a reduction from the two-bit, strong budget balance setup. This established a fundamental trade-off between the quality of the feedback and the strictness of the budget constraints.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10625
Loading