Abstract: Despite recent progress achieved by code large language models (LLMs), their remarkable abilities are largely dependent on fine-tuning on the high-quality data, posing challenges for data collection and annotation. To address this, current methods often design various data flywheels to collect complex code instructions, enabling models to handle more intricate tasks. However, these approaches typically rely on off-the-shelf datasets and data augmentation from a limited set of proprietary LLMs (e.g., Claude, GPT4, and so on), which restricts the diversity of the constructed data and makes it prone to systemic biases. In this paper, we propose **WarriorCoder**, a novel paradigm learns from expert battles to address these limitations. Specifically, we create an arena where leading expert code LLMs challenge each other, with evaluations conducted by impartial judges. This competitive framework generates novel training data from scratch, leveraging the strengths of all participants. Experimental results show that **WarriorCoder** achieves state-of-the-art performance compared to previous models of the same size, even without relying on proprietary LLMs.
Paper Type: Long
Research Area: Efficient/Low-Resource Methods for NLP
Research Area Keywords: Code LLMs, data synthesis, arena, low cost
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Approaches to low-resource settings, Data resources, Data analysis
Languages Studied: English, Python
Submission Number: 1411
Loading