Robust Transfer Learning for Active Level Set Estimation with Locally Adaptive Gaussian Process Prior

Published: 05 Sept 2024, Last Modified: 16 Oct 2024ACML 2024 Conference TrackEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Level set estimation, Active learning, Transfer learning
Verify Author List: I have double-checked the author list and understand that additions and removals will not be allowed after the submission deadline.
Abstract: The objective of active level set estimation for a black-box function is to precisely identify regions where the function values exceed or fall below a specified threshold by iteratively performing function evaluations to gather more information about the function. This becomes particularly important when function evaluations are costly, drastically limiting our ability to acquire large datasets. A promising way to sample-efficiently model the black-box function is by incorporating prior knowledge from a related function. However, this approach risks slowing down the estimation task if the prior knowledge is irrelevant or misleading. In this paper, we present a novel transfer learning method for active level set estimation that safely integrates a given prior knowledge while constantly adjusting it to guarantee a robust performance of a level set estimation algorithm even when the prior knowledge is irrelevant. We theoretically analyze this algorithm to show that it has a better level set convergence compared to standard transfer learning approaches that do not make any adjustment to the prior. Additionally, extensive experiments across multiple datasets confirm the effectiveness of our method when applied to various different level set estimation algorithms as well as different transfer learning scenarios.
A Signed Permission To Publish Form In Pdf: pdf
Supplementary Material: pdf
Primary Area: General Machine Learning (active learning, bayesian machine learning, clustering, imitation learning, learning to rank, meta-learning, multi-objective learning, multiple instance learning, multi-task learning, neuro-symbolic methods, etc.)
Paper Checklist Guidelines: I certify that all co-authors of this work have read and commit to adhering to the guidelines in Call for Papers.
Student Author: Yes
Submission Number: 182
Loading