Judging the Judges: A Systematic Investigation of Position Bias in Pairwise Comparative Assessments by LLMs
Keywords: LLM-as-a-Judge, LLM evaluators, position bias, length bias, verbosity bias, pairwise comparison, repetition stability, position consistency, preference fairness
TL;DR: A systematic investigation of position bias in pairwise comparative LLM-as-a-Judge in terms of repetition stability, position consistency, and preference fairness
Abstract: LLM-as-a-Judge presents a promising alternative to human evaluators across various tasks, but inherent biases, especially position bias — a tendency to favor solutions based on their position in the prompt — have compromised its effectiveness. Our study introduces a systematic framework to examine position bias in pairwise comparisons, focusing on repetition stability, position consistency, and preference fairness. This research significantly contributes to the field by introducing new concepts for understanding position bias and providing a multi-dimensional framework for evaluations. We conducted experiments with 12 LLM judges across MTBench and DevBench, covering 22 tasks and approximately 40 solution-generating models — candidates, resulting in over 100,000 evaluation instances. Our findings confirm that position bias in capable LLM judges is not due to random chances, along with notable variations observed across judges and tasks. Moreover, position bias is weakly influenced by the length of prompt components but significantly impacted by the quality gap between solutions. These insights can help optimize judge model selections, improve benchmark design, and inform future research on debiasing strategies, ultimately enhancing the reliability of LLM judges.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4991
Loading