Temporal Test-Time Adaptation with State-Space Models

25 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: test-time adaptation, state-space models, probabilistic modelling, dynamical systems
TL;DR: We adapt to distribution shift over time by modelling its dynamics in representation space.
Abstract: Distribution shifts between training and test data are inevitable over the lifecycle of a deployed model, leading to performance decay. Adapting a model on test samples can help mitigate this drop in performance. However, most test-time adaptation methods have focused on synthetic corruption shifts, leaving a variety of distribution shifts underexplored. In this paper, we focus on distribution shifts that evolve gradually over time, which are common in the wild but challenging for existing methods, as we show. To address this, we propose STAD, a probabilistic state-space model that adapts a deployed model to temporal distribution shifts by learning the time-varying dynamics in the last set of hidden features. Without requiring labels, our model infers time-evolving class prototypes that act as a dynamic classification head. Through experiments on real-world temporal distribution shifts, we show that our method excels in handling small batch sizes and label shift.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4600
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview