Eliminating Agentic Workflow for Introduction Generation with Parametric Stage Tokens

ICLR 2026 Conference Submission12997 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Model; Agentic Workflow; Scientific Introduction
Abstract: In recent years, using predefined agentic workflows to guide large language models (LLMs) for literature classification and review has become a research focus. However, writing research introductions is more challenging. It requires rigorous logic, coherent structure, and abstract summarization. Existing workflows often suffer from long reasoning chains, error accumulation, and reduced textual coherence. To address these limitations, we propose eliminating external agentic workflows. Instead, we directly parameterize their logical structure into the LLM. This allows the generation of a complete introduction in a single inference. To this end, we introduce the Stage Token for Introduction Generation (STIG). STIG converts the multiple stages of the original workflow into explicit stage signals. These signals guide the model to follow different logical roles and functions during generation. Through instruction tuning, the model learns the mapping between stage tokens and text functions. It also learns the logical order and transition patterns between stages, encoding this knowledge into the model parameters. Experimental results show that STIG can generate multi-stage text in a single inference. It does not require explicit workflow calls. STIG outperforms traditional agentic workflows and other baselines on metrics of semantic similarity and sentence-level structural rationality. The code is provided in the Supplementary Materials.
Supplementary Material: zip
Primary Area: generative models
Submission Number: 12997
Loading