Understanding and Improving Adversarial Attacks on Latent Diffusion Model

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Generative Models, Adversarial Attack, Diffusion Models, Latent Diffusion Model
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We present a theoretical framework for adversarial attacks on LDM and a powerful and memory-efficient novel method for the attack.
Abstract: Latent Diffusion Model (LDM) has emerged as a leading tool in image generation, particularly with its capability in few-shot generation. This capability also presents risks, notably in unauthorized artwork replication and misinformation generation. In response, adversarial attacks have been designed to safeguard personal images from being used as reference data. However, existing adversarial attacks are predominantly empirical, lacking a solid theoretical foundation. In this paper, we introduce a comprehensive theoretical framework for understanding adversarial attacks on LDM. Based on the framework, we propose a novel adversarial attack that exploits a unified target to guide the adversarial attack both in the forward and the reverse process of LDM. We provide empirical evidences that our method overcomes the offset problem of the optimization of adversarial attacks in existing methods. Through rigorous experiments, our findings demonstrate that our method outperforms current attacks and is able to generalize over different state-of-the-art few-shot generation pipelines based on LDM. Our method can serve as a stronger and efficient tool for people exposed to the risk of data privacy and security to protect themselves in the new era of powerful generative models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4599
Loading