Abstract: Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, significantly reduce the number of trainable parameters by introducing low-rank decomposition matrices. However, existing methods perform extensive matrix multiplications in domain specialization tasks, resulting in computational inefficiency and sub-optimal fine-tuning performance. Hence, we propose LoSiA (**Lo**w-Resources **S**ubnet **I**ntegration **A**daptation), an innovative method that dynamically localizes and optimizes critical parameters during the training process. Specifically, it identifies a sub-network using gradient sparsity analysis and optimizes it as the trainable target. This design enables effective high-rank adaptation by updating only the sub-network parameters, reducing the additional matrix multiplication. We also present LoSiA-Pro, a faster implementation of LoSiA, which reduces the training latency by about $27$% compared to LoRA. Extensive evaluations show that our method achieves minimal performance drop compared to full fine-tuning, while requiring the least training time across domain specialization and common-sense reasoning tasks. Further analysis shows that LoSiA also reduces forgetting during continued training. The source code will be publicly available.
Paper Type: Long
Research Area: Efficient/Low-Resource Methods for NLP
Research Area Keywords: parameter-efficient-training
Contribution Types: Model analysis & interpretability, Approaches to low-resource settings, Approaches low compute settings-efficiency
Languages Studied: English
Submission Number: 6555
Loading