Unsupervised Learning via Network-Aware Embeddings

19 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: graph neural networks, graph embeddings, node attributes, data clustering
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Introduce the new problem of clustering node attributes in a network via node attribute embeddings that take into account the network structure
Abstract: Data clustering, the task of grouping observations according to their similarity, is a key component of unsupervised learning -- with real world applications in diverse fields such as biology, medicine, and social science. Often in these fields the data comes with complex interdependencies between the dimensions of analysis, for instance the various characteristics and opinions people can have live on a complex social network. Current clustering methods are ill-suited to tackle this complexity: deep learning can approximate these dependencies, but not take their explicit map as the input of the analysis. In this paper, we aim at fixing this blind spot in the unsupervised learning literature. We can create network-aware embeddings by estimating the network distance between numeric node attributes via the generalized Euclidean distance. Differently from all methods in the literature that we know of, we do not cluster the nodes of the network, but rather its node attributes. In our experiments we show that having these network embeddings is always beneficial for the learning task; that our method scales to large networks; and that we can actually provide actionable insights in applications in a variety of fields such as marketing, economics, and political science. Our method is fully open source and data and code are available to reproduce all results in the paper.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Submission Number: 1723
Loading