Towards Faithful Neural Network Intrinsic Interpretation with Shapley Additive Self-Attribution

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: interpretability, neural networks, additive attribution, Shapley value
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Self-interpreting neural networks have garnered significant interest in research. Existing works in this domain often (1) lack a solid theoretical foundation ensuring genuine interpretability or (2) compromise model expressiveness. In response, we formulate a generic Additive Self-Attribution (ASA) framework. Observing the absence of Shapley value in Additive Self-Attribution, we propose Shapley Additive Self-Attributing Neural Network (SASANet), with theoretical guarantees for the self-attribution value equal to the output's Shapley values. Specifically, SASANet uses a marginal contribution-based sequential schema and internal distillation-based training strategies to model meaningful outputs for any number of features, resulting in un-approximated meaningful value function. Our experimental results indicate SASANet surpasses existing self-attributing models in performance and rivals black-box models. Moreover, SASANet is shown more precise and efficient than post-hoc methods in interpreting its own predictions.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4641
Loading