Document Segmentation Matters for Retrieval-Augmented Generation

ACL ARR 2025 February Submission3189 Authors

15 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge. A critical yet underexplored challenge in RAG is document segmentation, also known as document chunking. Existing widely-used rule-based chunking methods usually lead to suboptimal splits, where overly large chunks introduce irrelevant information and small chunks lack semantic coherence. Existing semantic-based approaches either require costly LLM calls or fail to adaptively group contextually related sentences. To address these limitations, we propose PIC, Pseudo-Instruction for document Chunking), a simple yet effective method that leverages document summaries as pseudo-instructions to guide chunking. By computing semantic similarity between sentences and the summary, PIC dynamically groups sentences into chunks that align with the document’s key themes, ensuring semantic completeness and relevance to potential user instructions. Experiments on multiple open-domain question-answering benchmarks demonstrate that PIC can significantly improve retrieval accuracy (Hits@k) and end-to-end QA performance (Exact Match) without any additional training.
Paper Type: Long
Research Area: Information Retrieval and Text Mining
Research Area Keywords: dense retrieval, retrieval-augmented generation, chunking
Contribution Types: NLP engineering experiment
Languages Studied: English
Submission Number: 3189
Loading