Hybrid Sharing for Multi-Label Image Classification

Published: 16 Jan 2024, Last Modified: 13 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Multi-task learning, Multi-label learning, mixture-of-experts, image classification
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Existing multi-label classification methods have long suffered from label heterogeneity, where learning a label obscures another. By modeling multi-label classification as a multi-task problem, this issue can be regarded as a negative transfer, which indicates challenges to achieve simultaneously satisfied performance across multiple tasks. In this work, we propose the Hybrid Sharing Query (HSQ), a transformer-based model that introduces the mixture-of-experts architecture to image multi-label classification. HSQ is designed to leverage label correlations while mitigating heterogeneity effectively. To this end, HSQ is incorporated with a fusion expert framework that enables it to optimally combine the strengths of task-specialized experts with shared experts, ultimately enhancing multi-label classification performance across most labels. Extensive experiments are conducted on two benchmark datasets, with the results demonstrating that the proposed method achieves state-of-the-art performance and yields simultaneous improvements across most labels. The code is available at https://github.com/zihao-yin/HSQ
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 5495
Loading