Keywords: Retrieval-augmented Generation, RAG, RL
TL;DR: Optimizing Embedding-based Retrieval for RAG via Reinforcement Learning.
Abstract: As retrieval-augmented generation (RAG) becomes more widespread, the role of retrieval is shifting from retrieving information for human browsing to retrieving context for AI reasoning. This shift creates more complex search environments, where relevance is difficult to pre-define. Existing retrievers rely on supervised fine-tuning (SFT) with human labels or synthetic data, resulting in static relevance that struggles to adapt to diverse RAG environments. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through Reinforcement learning (RL). Specifically, we adopt an RL training paradigm that enables the retriever to explore and self-improve within given RAG environments, automating the learning process with minimal manual experimentation or tuning effort. Extensive experiments across diverse tasks demonstrate that \ours improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 15771
Loading