Segment then Splat: Unified 3D Open-Vocabulary Segmentation via Gaussian Splatting

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: 3D Reconstruction, 3D Scene Understanding, Open Vocabulary Segmentation, Differentiable Rendering
Abstract: Open-vocabulary querying in 3D space is crucial for enabling more intelligent perception in applications such as robotics, autonomous systems, and augmented reality. However, most existing methods rely on 2D pixel-level parsing, leading to multi-view inconsistencies and poor 3D object retrieval. Moreover, they are limited to static scenes and struggle with dynamic scenes due to the complexities of motion modeling. In this paper, we propose Segment then Splat, a 3D-aware open vocabulary segmentation approach for both static and dynamic scenes based on Gaussian Splatting. Segment then Splat reverses the long established approach of "segmentation after reconstruction'' by dividing Gaussians into distinct object sets before reconstruction. Once reconstruction is complete, the scene is naturally segmented into individual objects, achieving true 3D segmentation. This design eliminates both geometric and semantic ambiguities, as well as Gaussian–object misalignment issues in dynamic scenes. It also accelerates the optimization process, as it eliminates the need for learning a separate language field. After optimization, a CLIP embedding is assigned to each object to enable open-vocabulary querying. Extensive experiments one various datasets demonstrate the effectiveness of our proposed method in both static and dynamic scenarios.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 745
Loading