Keywords: supervised learning, sparse attention, representation learning, representational alignment, directional graph attention
TL;DR: We introduce a module for learning sparse instance-wise measures of similarity in neural networks and prove its usefulness in regression.
Abstract: Neighbor-based methods are a natural alternative to linear prediction for tabular data when relationships between inputs and targets exhibit complexity such as nonlinearity, periodicity, or heteroscedasticity. Yet in deep learning on unstructured data, nonparametric neighbor-based approaches are rarely implemented in lieu of simple linear heads. This is primarily due to the ability of systems equipped with linear regression heads to co-learn internal representations along with the linear head's parameters. To unlock the full potential of neighbor-based methods in neural networks we introduce SoftStep, a parametric module that learns sparse instance-wise similarity measures directly from data. When integrated with existing neighbor-based methods, SoftStep enables regression models that consistently outperform linear heads across diverse architectures, domains, and training scenarios. We focus on regression tasks, where we show theoretically that neighbor-based prediction with a mean squared error objective constitutes a metric learning algorithm that induces well-structured embedding spaces. We then demonstrate analytically and empirically that this representational structure translates into superior performance when combined with the sparse, instance-wise similarity measures introduced by SoftStep. Beyond regression, SoftStep is a general method for learning instance-wise similarity in deep neural networks, with broad applicability to attention mechanisms, metric learning, representational alignment, and related paradigms.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 22081
Loading