Broadly-Exploring, Local-Policy Trees for Long-Horizon Task PlanningDownload PDF

Published: 13 Sept 2021, Last Modified: 12 Mar 2024CoRL2021 PosterReaders: Everyone
Keywords: RRT, Task and Motion Planning, Model-based Planning, Tree-search
Abstract: Long-horizon planning in realistic environments requires the ability to reason over sequential tasks in high-dimensional state spaces with complex dynamics. Classical motion planning algorithms, such as rapidly-exploring random trees, are capable of efficiently exploring large state spaces and computing long-horizon, sequential plans. However, these algorithms are generally challenged with complex, stochastic, and high-dimensional state spaces as well as in the presence of small, topologically complex goal regions, which naturally emerge in tasks that interact with the environment. Machine learning offers a promising solution for its ability to learn general policies that can handle complex interactions and high-dimensional observations. However, these policies are generally limited in horizon length. Our approach, Broadly-Exploring, Local-policy Trees (BELT), merges these two approaches to leverage the strengths of both through a task-conditioned, model-based tree search. BELT uses an RRT-inspired tree search to efficiently explore the state space. Locally, the exploration is guided by a task-conditioned, learned policy capable of performing general short-horizon tasks. This task space can be quite general and abstract; its only requirements are to be sampleable and to well-cover the space of useful tasks. This search is aided by a task-conditioned model that temporally extends dynamics propagation to allow long-horizon search and sequential reasoning over tasks. BELT is demonstrated experimentally to be able to plan long-horizon, sequential trajectories with a goal conditioned policy and generate plans that are robust.
Supplementary Material: zip
Poster: png
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
17 Replies