CGSA: Class-Guided Slot-Aware Adaptation for Source-Free Object Detections

ICLR 2026 Conference Submission17563 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Source-Free Domain Adaptation, Object Detection, Object-Centric Learning
Abstract: Source-Free Domain Adaptive Object Detection (SF-DAOD) aims to adapt a detector trained on a labeled source domain to an unlabeled target domain without retaining any source data. Despite recent progress, most popular approaches focus on tuning pseudo-label thresholds or refining the teacher-student framework, while overlooking object-level structural cues within cross-domain data. In this work, we present CGSA, the first framework that brings Object-Centric Learning (OCL) into SF-DAOD by integrating slot-aware adaptation into the DETR-based detector. Specifically, our approach integrates a Hierarchical Slot Awareness (HSA) module into the detector to progressively disentangle images into slot representations that act as visual priors. These slots are then guided toward class semantics via a Class-Guided Slot Contrast (CGSC) module, maintaining semantic consistency and prompting domain-invariant adaptation. Experiments on five cross-domain object detection datasets demonstrate that our approach outperforms previous SF-DAOD methods, with theoretical derivations and experimental analysis further demonstrating the effectiveness of the proposed components and the framework, thereby indicating the promise of object-centric design in privacy-sensitive adaptation scenarios. All code will be released later.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 17563
Loading