Entropy-Based Aggregation for Fair and Effective Federated Learning

ICLR 2025 Conference Submission4068 Authors

25 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Fairness, Heterogeneous Federated Learning
TL;DR: We propose a fair FL algorithm that addresses the underexplored challenge of improving performance fairness while enhancing global accuracy, with theoretical and empirical demonstrations.
Abstract: Federated Learning (FL) enables collaborative model training across distributed devices while preserving data privacy. Nonetheless, the heterogeneity of edge devices often leads to inconsistent performance of the globally trained models, resulting in unfair outcomes among users. Existing federated fairness algorithms strive to enhance fairness but often fall short in maintaining the overall performance of the global model, typically measured by the average accuracy across all clients. To address this issue, we propose a novel algorithm that leverages entropy-based aggregation combined with model and gradient alignments to simultaneously optimize fairness and global model performance. Our method employs a bi-level optimization framework, where we derive an analytic solution to the aggregation probability in the inner loop, making the optimization process computationally efficient. Additionally, we introduce an innovative alignment update and an adaptive strategy in the outer loop to further balance global model's performance and fairness. Theoretical analysis indicates that our approach guarantees convergence even in non-convex FL settings and demonstrates significant fairness improvements in generalized regression and strongly convex models. Empirically, our approach surpasses state-of-the-art federated fairness algorithms, ensuring consistent performance among clients while improving the overall performance of the global model.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4068
Loading