Stoichiometry Representation Learning with Polymorphic Crystal Structures

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Materials Science, Stoichiometry, Crystalline Materials, Representation Learning, Graph Neural Networks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Despite the recent success of machine learning (ML) in materials science, its success heavily relies on the structural description of crystal, which is itself computationally demanding and occasionally unattainable. Stoichiometry descriptors can be an alternative approach, which reveals the ratio between elements involved to form a certain compound without any structural information. However, it is not trivial to learn the representations of stoichiometry due to the nature of materials science called polymorphism, i.e., a single stoichiometry can exist in multiple structural forms due to the flexibility of atomic arrangements, inducing uncertainties in representation. To this end, we propose PolySRL, which learns the probabilistic representation of stoichiometry by utilizing the readily available structural information, whose uncertainty reveals the polymorphic structures of stoichiometry. Extensive experiments on sixteen datasets demonstrate the superiority of PolySRL, and analysis of uncertainties shed light on the applicability of PolySRL in real-world material discovery.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4333
Loading