GeRaF: Neural Geometry Reconstruction from Radio Frequency Signals

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Radio Frequency, Radar, Multi-view Reconstruction, Neural Rendering
TL;DR: GeRaF is the first method to use neural implicit learning for near-range 3D geometry reconstruction from radio frequency (RF) signals.
Abstract: GeRaF is the first method to use neural implicit learning for near-range 3D geometry reconstruction from radio frequency (RF) signals. Unlike RGB or LiDAR-based methods, RF sensing can see through occlusion but suffers from low resolution and noise due to its lens-less imaging nature. While lenses in RGB imaging constrain sampling to 1D rays, RF signals propagate through the entire space, introducing significant noise and leading to cubic complexity in volumetric rendering. Moreover, RF signals interact with surfaces via specular reflections requiring fundamentally different modeling. To address these challenges, GeRaF (1) introduces filter-based rendering to suppress irrelevant signals, (2) implements a physics-based RF volumetric rendering pipeline, and (3) proposes a novel lens-less sampling and lens-less alpha blending strategy that makes full-space sampling feasible during training. By learning signed distance functions, reflectiveness, and signal power through MLPs and trainable parameters, GeRaF takes the first step towards reconstructing millimeter-level geometry from RF signals in real-world settings.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 4571
Loading