Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: unified representation; molecular interaction; equivariant transformer
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Many processes in biology and drug discovery involve various 3D interactions between molecules, such as protein and protein, protein and small molecule, etc. Given that different molecules are usually represented in different granularity, existing methods usually encode each type of molecules independently with different models, leaving it defective to learn the universal underlying interaction physics. In this paper, we first propose to universally represent an arbitrary 3D complex as a geometric graph of sets, shedding light on encoding all types of molecules with one model. We then propose a Generalist Equivariant Transformer (GET) to effectively capture both domain-specific hierarchies and domain-agnostic interaction physics. To be specific, GET consists of a bilevel attention module, a feed-forward module and a layer normalization module, where each module is E(3) equivariant and specialized for handling sets of variable sizes. Notably, in contrast to conventional pooling-based hierarchical models, our GET is able to retain fine-grained information of all levels. Extensive experiments on the interactions between proteins, small molecules and RNA/DNAs verify the effectiveness and generalization capability of our proposed method across different domains.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7748
Loading