Planning in Dynamic Environments with Conditional Autoregressive Models

Published: 01 Jan 2018, Last Modified: 14 Jun 2024CoRR 2018EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We demonstrate the use of conditional autoregressive generative models (van den Oord et al., 2016a) over a discrete latent space (van den Oord et al., 2017b) for forward planning with MCTS. In order to test this method, we introduce a new environment featuring varying difficulty levels, along with moving goals and obstacles. The combination of high-quality frame generation and classical planning approaches nearly matches true environment performance for our task, demonstrating the usefulness of this method for model-based planning in dynamic environments.
Loading