RotRNN: Modelling Long Sequences with Rotations

27 Sept 2024 (modified: 25 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Sequence Modelling, Recurrent Neural Networks, State Space Models, Long Sequences
TL;DR: We propose a novel linear recurrent layer for long sequence modelling using rotation matrices for stable and efficient recurrence.
Abstract: Linear recurrent neural networks, such as State Space Models (SSMs) and Linear Recurrent Units (LRUs), have recently shown state-of-the-art performance on long sequence modelling benchmarks. Despite their success, their empirical performance is not well understood and they come with a number of drawbacks, most notably their complex initialisation and normalisation schemes. In this work, we address some of these issues by proposing RotRNN – a linear recurrent model which utilises the convenient properties of rotation matrices. We show that RotRNN provides a simple and efficient model with a robust normalisation procedure, and a practical implementation that remains faithful to its theoretical derivation. RotRNN also achieves competitive performance to state-of-the-art linear recurrent models on several long sequence modelling datasets.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11374
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview